Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.324
Filtrar
1.
Reprod Toxicol ; : 108587, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663639

RESUMO

Tdap is an acronym for tetanus(T), diphtheria(D), and acellular pertussis(aP), and is a preventive vaccine that combines vaccines against three diseases. BVN008 is a Tdap vaccine designed to protect against three diseases: diphtheria, tetanus, and pertussis. The lower-case "d" and "p" in Td and Tdap means these vaccines use smaller amounts of diphtheria and whooping cough. The lower doses are appropriate for adolescents and adults. The purpose of this study was to identify adverse effects in pregnant or lactating female Sprague-Dawley rats including maternal fertility and toxicity, and development of the embryos, fetus, and pups following intramuscular administration of BVN008. Two groups of 50 female Sprague-Dawley rats were administered four or five intramuscular injections of the vaccine (human dose of 0.5mL at 4 and 2 weeks before pairing, on gestation day (GD) 8 and 15, and lactation day (LD) 7. A negative control group was administered 0.9% saline at the same dose four or five times. There were no adverse effects on fertility, reproductive performance, or maternal toxicity of the F0 females. There was no effect of developmental toxicity in F1 fetuses and pups including fetal body weight and morphology, postnatal growth, development, and behavior until weaning. Antibodies against tetanus, diphtheria, and pertussis were transferred to the F1 fetuses and F1 pups via placenta and milk. These results demonstrate that BVN008 had no detectable adverse effects in either the F0 female rats, the F1 fetuses or pups.

2.
Eur J Oral Sci ; : e12988, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664917

RESUMO

Our study investigated the impact on male mouse fertility and reproduction of long-term (14 weeks) exposure to triethylene glycol dimethacrylate (TEGDMA), a co-monomer of resin-based compounds, at doses of 0.01, 0.1, 1, and 10 ppm. Test and control mice were then paired with sexually mature untreated female mice and their fertility evaluated. Females paired with males exposed to all TEGDMA doses exhibited a significant decline in pregnancy rates, and significant increases in the total embryonic resorption-to-implantation ratio, except for males exposed to 0.01 ppm TEGDMA. Males in the highest dose group (10 ppm) showed significant increases in seminal vesicle and preputial gland weights. They also had significantly higher serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) than the controls, and the 0.01 ppm dosage group for FSH levels. TEGDMA exposure resulted in notable histopathological alterations in the testis, with detachment of germ cells and shedding of germinal epithelium into the tubule lumen. These results strongly indicate that TEGDMA exposure has detrimental consequences on the reproductive abilities and functions in male mice through disruption of the standard hormonal regulation of the reproductive system, leading to changes in spermatogenesis and ultimately leading to decreased fertility.

3.
Sci Total Environ ; 929: 172537, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636855

RESUMO

The joint toxicity effects of mixtures, particularly reproductive toxicity, one of the main causes of aquatic ecosystem degradation, are often overlooked as it is impractical to test all mixtures. This study developed and evaluated the following models to predict the concentration response curve concerning the joint reproductive toxicity of mixtures of three bisphenol analogues (BPA, BPF, BPAF) on the rotifer Brachionus calyciflorus: concentration addition (CA), independent action (IA), and two deep neural network (DNN) models. One applied mixture molecular descriptors as input variables (DNN-QSAR), while the other applied the ratios of chemicals in the mixtures (DNN-Ratio). Descriptors related to molecular mass were found to be of greater importance and exhibited a proportional relationship with toxic effects. The results indicate that the range of correlation coefficients (R2) between predicted and measured values for various mixture rays by CA and IA models is 0.372 to 0.974 and - 0.970 to 0.586, respectively. The R2 values for DNN-Ratio and DNN-QSAR were 0.841 to 0.984 and 0.834 to 0.991, respectively, demonstrating that models developed by DNN significantly outperform traditional models in predicting the joint toxicity of mixtures. Furthermore, DNN-QSAR not only predicts mixture toxicity but also provides accurate toxicity predictions for BPA, BPF, and BPAF, with R2 values of 0.990, 0.616, and 0.887, respectively, while DNN-Ratio yields values of 0.920, 0.355, and - 0.495. The study also found that the joint effects of mixtures are primarily influenced by the total concentration of the mixtures, and an increase in total concentration shifts the joint effects towards addition. This study introduces a novel approach to predict joint toxicity and analyze the influencing factors of joint effects, providing a more comprehensive assessment of the ecological risk posed by mixtures.

4.
Chemosphere ; 357: 142103, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653400

RESUMO

Salinity is an important environmental factor influencing the toxicity of chemicals. Bisphenol A (BPA) is an environmental endocrine disruptor with adverse effects on aquatic organisms, such as fish. However, the influence of salinity on the biotoxicity of BPA and the underlying mechanism are unclear. In this study, we exposed marine medaka (Oryzias melastigma) to BPA at different salinities (0 psµ, 15 psµ, and 30 psµ) for 70days to investigate the toxic effects. At 0 psµ salinity, BPA had an inhibitory effect on the swimming behavior of female medaka. At 15 psµ salinity, exposure to BPA resulted in necrotic cells in the ovaries but not on the spermatozoa. In addition, BPA exposure changed the transcript levels of genes related to the nervous system (gap43, elavl3, gfap, mbpa, and α-tubulin) and the hypothalamic-pituitary-gonadal (HPG) axis (fshr, lhr, star, arα, cyp11a, cyp17a1, cyp19a, and erα); the expression changes differed among salinity levels. These results suggest that salinity influences the adverse effects of BPA on the nervous system and reproductive system of medaka. These results emphasize the importance of considering the impact of environmental factors when carrying out ecological risk assessment of pollutants.

5.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668183

RESUMO

Reproductive disorders and declining fertility rates are significant public health concerns affecting birth rates and future populations. Male infertility, often due to spermatogenesis defects, may be linked to environmental pollutants like nickel nanoparticles (Ni NPs). Ni NPs are extensively utilized across different industries. Nevertheless, their potential adverse effects cannot be overlooked. Previous studies have linked the reproductive toxicity induced by Ni NPs with disturbances in mitochondrial function. Mitochondrial division/fusion dynamics are crucial to their proper function, yet little is known about how Ni NPs perturb these dynamics and whether such perturbation contributes to the impairment of the male reproductive system. Herein, we demonstrated that the exposure of Ni NPs to the mouse-derived spermatogonia cell line (GC-1 cells) triggered DRP1-mediated mitochondrial division and the enhanced impairment of mitochondria, consequently promoting mitochondria-dependent cell apoptosis. Notably, both the mitochondrial division inhibitor (Mdivi-1) and lentiviral-transfected cells with low expression of Dnm1l-DK in these cells could mitigate the toxic effects induced by Ni NPs, pointing to the potential role of mitochondrial dynamics in Ni NP-induced reproductive toxicity. Collectively, our work contributes to the understanding of the mechanisms by which Ni NPs can impact male reproductive function and identifies mitochondrial division as a potential target for intervention.

6.
J Hazard Mater ; 471: 134356, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643579

RESUMO

Exposure to N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) caused toxicity on Caenorhabditis elegans, including reproductive toxicity. However, the underlying mechanisms for this induced reproductive toxicity by 6-PPDQ remain largely unclear. We examined possible association of ferroptosis activation with reproductive toxicity of 6-PPDQ. In 1-100 µg/L 6-PPDQ exposed nematodes, Fe2+ content was increased, which was accompanied with enhanced lipid peroxidation, increased malonydialdehyde (MDA) content, and decreased L-glutathione (GSH) content. Exposure to 1-100 µg/L 6-PPDQ decreased expressions of ftn-1 encoding ferritin, ads-1 encoding AGPS, and gpx-6 encoding GPX4 and increased expression of bli-3 encoding dual oxidase. After 6-PPDQ exposure, RNAi of ftn-1 decreased ads-1 and gpx-6 expressions and increased bli-3 expression. RNAi of ftn-1, ads-1, and gpx-6 strengthened alterations in ferroptosis related indicators, and RNAi of bli-3 suppressed changes of ferroptosis related indicators in 6-PPDQ exposed nematodes. Meanwhile, RNAi of ftn-1, ads-1, and gpx-6 induced susceptibility, and RNAi of bli-3 caused resistance to 6-PPDQ reproductive toxicity. Moreover, expressions of DNA damage checkpoint genes (clk-2, mrt-2, and hus-1) could be increased by RNAi of ftn-1, ads-1, and gpx-6 in 6-PPDQ exposed nematodes. Therefore, our results demonstrated activation of ferroptosis in nematodes exposed to 6-PPDQ at environmentally relevant concentrations, and this ferroptosis activation was related to reproductive toxicity of 6-PPDQ.

7.
Aquat Toxicol ; 271: 106927, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38643640

RESUMO

As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17ßhsd, 3ßhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.

8.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1594-1601, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621944

RESUMO

The ovarian germline stem cells(OGSCs) cultured in the optimized culture system were used as the research object to observe the effect of Tripterygium glycosides(TG) on OGSCs and explore the mechanism of reproductive toxicity by the Notch signaling pathway. Cell counting kit-8(CCK-8) was used to observe the viability level of OGSCs in mice cultured in vitro by TG of 3.75, 7.5, and 15 µg·mL~(-1). Immunofluorescence technology and reverse transcription-polymerase chain reaction(RT-PCR) were used to detect the protein and gene expression level of OGSCs marker mouse vasa homologue(MVH) and octamer-binding transcription factor 4(Oct4) by TG of 3.75 µg·mL~(-1). RT-PCR detected the gene expression of neurogenic locus Notch homolog protein 1(Notch1), Hes family BHLH transcription factor 1(Hes1), and jagged canonical Notch ligand 1(Jagged1). The RNA was extracted for transcriptome analysis to analyze the mechanism of action of TG intervention on OGSCs. 3.75 µg·mL~(-1) of TG was combined with 40 ng·mL~(-1) Notch signaling pathway γ-secretagocin agonist jagged canonical notch ligand(Jagged) for administration. CCK-8 was used to detect the viability level of OGSCs. Double immunofluorescence technology was used to detect the protein co-expression of MVH with Hes1, Notch1, and Jagged1. The results showed that compared with the blank group, the TG administration group significantly inhibited the activity of OGSCs(P<0.01 or P<0.001). It could reduce the protein and gene expression of OGSC markers, namely MVH and Oct4(P<0.05, P<0.01, or P<0.001). It could significantly inhibit the gene expression of Notch1, Hes1, and Jagged1(P<0.001). Transcriptomic analysis showed that TG affected the growth and proliferation of OGSCs by intervening Jagged1, a ligand associated with the Notch signaling pathway. The experimental results showed that the combination of Notch signaling pathway γ-secretagorein agonist Jagged could significantly alleviate the decrease in OGSC viability induced by TG(P<0.001) and significantly increased the OGSC viability compared with the TG group(P<0.001). It also could significantly increase the co-expression of MVH/Jagged1, MVH/Hes1, and MVH/Notch1 proteins(P<0.01 or P<0.001). It suggested that TG play the role of γ-secretagorease inhibitors by downregulating the OGSC markers including MVH and Oct4 and Notch signaling pathway molecules such as Notch1, Hes1, and Jagged1, participate in the OGSC pathway, and mediate reproductive toxicity caused by the Notch signaling pathway.


Assuntos
Células-Tronco de Oogônios , Camundongos , Animais , Células-Tronco de Oogônios/metabolismo , Tripterygium , Ligantes , Transdução de Sinais
9.
Arch Toxicol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630283

RESUMO

Cannabidiol (CBD), one of the major components extracted from the plant Cannabis sativa L., has been used as a prescription drug to treat seizures in many countries. CBD-induced male reproductive toxicity has been reported in animal models; however, the underlying mechanisms remain unclear. We previously reported that CBD induced apoptosis in primary human Leydig cells, which constitute the primary steroidogenic cell population in the testicular interstitium. In this study, we investigated the effects of CBD and its metabolites on TM3 mouse Leydig cells. CBD, at concentrations below 30 µM, reduced cell viability, induced G1 cell cycle arrest, and inhibited DNA synthesis. CBD induced apoptosis after exposure to high concentrations (≥ 50 µM) for 24 h or a low concentration (20 µM) for 6 days. 7-Hydroxy-CBD and 7-carboxy-CBD, the main CBD metabolites of CBD, exhibited the similar toxic effects as CBD. In addition, we conducted a time-course mRNA-sequencing analysis in both primary human Leydig cells and TM3 mouse Leydig cells to understand and compare the mechanisms underlying CBD-induced cytotoxicity. mRNA-sequencing analysis of CBD-treated human and mouse Leydig cells over a 5-day time-course indicated similar responses in both cell types. Mitochondria and lysosome dysfunction, oxidative stress, and autophagy were the major enriched pathways in both cell types. Taken together, these findings demonstrate comparable toxic effects and underlying mechanisms in CBD-treated mouse and primary human Leydig cells.

10.
Chemosphere ; 357: 141967, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615950

RESUMO

The organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) is an endocrine-disrupting compound (EDC) that has been banned by most countries for decades. However, it continues to be detected in nearly all humans and wildlife due to its biological and environmental persistence. The ovarian dysgenesis syndrome hypothesis speculates that exposure to EDCs during sensitive developmental windows such as early gonadal differentiation lead to reproductive disorders later in life. Yet, mechanisms by which DDT affects developing gonads remain unclear due to the inherent challenge of getting developmental exposure data from adults presenting with reproductive disease. The Japanese medaka (Oryzias latipes) is a valuable fish model for sex-specific toxicological studies due to its chromosomal sex determination, external embryonic development, short generation time, and extensively mapped genome. It is well documented that medaka exposed to DDT and its metabolites and byproducts (herein referred to as DDT+) at different developmental time points experience permanent alterations in gonadal morphology, reproductive success, and molecular and hormonal signaling. However, the overwhelming majority of studies focus primarily on functional and morphological outcomes in males and females and have rarely investigated long-term transcriptional or molecular effects. This review summarizes previous experimental findings and the state of our knowledge concerning toxic effects DDT + on reproductive development, fertility, and health in the valuable medaka model. It also identifies gaps in knowledge, emphasizing a need for more focus on molecular mechanisms of ovarian endocrine disruption using enhanced molecular tools that have become increasingly available over the past few decades. Furthermore, DDT forms a myriad of over 45 metabolites and transformation products in biota and the environment, very few of which have been evaluated for environmental abundance or health effects. This reinforces the demand for high throughput and economical in vivo models for predictive toxicology screening, and the Japanese medaka is uniquely positioned to meet this need.

11.
J Trace Elem Med Biol ; 84: 127455, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657337

RESUMO

Cadmium (Cd) is a heavy metal that has harmful effects and is one of the contaminants found in the environment. Cd exposure causes important pathophysiological processes, such as reproductive toxicity. Linalool (Lnl) is a monoterpene, a component of essential oils known to be produced synthetically. Additionally, Lnl has many important beneficial effects, such as anti-inflammatory and antioxidant effects. The objective of this study is to determine whether Lnl has a healing impact in opposition to testicular tissue damage due to Cd exposure. In the study, 28 male rats were divided at random into four equal groups (n = 7). No treatment was applied to the control group. CdCl2 was applied intraperitoneally to the Cd group at a dose of 3 mg/kg for the first 7 days of the trial. For the Cd + Lnl group, 3 mg/kg CdCl2 was applied intraperitoneally for the first 7 days of the trial, and 100 mg/kg/day Lnl was applied. Upon completion of all applications, the rats were sacrificed and blood samples and testicular tissue were taken. Cd exposure caused histopathological changes, oxidative stress, inflammation, and an increase in apoptotic cells in testicular tissue. However, Cd altered endocrine hormones in the hypothalamic-pituitary-gonad axis. However, Lnl application against Cd exposure was able to regulate the negativity caused by Cd in both testicular tissue and endocrine hormone levels. In conclusion, Lnl may be a potential therapeutic strategy against Cd-induced reproductive toxicity. We believe that Lnl has a high potential for further studies to determine its detailed mechanisms of action and cellular signaling pathways.

12.
Reprod Toxicol ; 126: 108586, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614435

RESUMO

This study examined the protective effects of a Petroselinum crispum (P. crispum) methanolic extract on reproductive dysfunction induced by acrylamide in male rats. A total of 40 rats were divided into four groups (n=10). The control group received distilled water, the acrylamide group received 10 mg/kg of acrylamide, the P. crispum group received 100 mg/kg of P. crispum extract, and the combined group was pretreated with P. crispum for two weeks before co-administration of P. crispum and acrylamide. All administrations were administered orally using a gastric tube for eight weeks. Acrylamide decreased testosterone levels but did not affect levels of FSH or LH. It also increased testicular levels of (MDA) malondialdehyde and reduced activity of (SOD) superoxide dismutase and impairment of sperm parameters. Furthermore, the administration of acrylamide resulted in an elevation of tumor necrosis factor-alpha (TNF-α) levels and a reduction in the levels of steroidogenic acute regulatory protein (STAR) and cytochrome P450scc (P450scc). Acrylamide negatively affected the histopathological outcomes, Johnsen's score, the diameter of seminiferous tubules, and the thickness of the germinal epithelium. It also upregulated the expression of NF-ĸB P65 and downregulated the expression of kinesin motor protein. In contrast, treatment with P. crispum extract restored the levels of antioxidant enzymes, improved sperm parameters, and normalized the gene expression of TNF-α, IL-10, IL-6, iNOS, NF-ĸB, STAR, CYP17A1, 17ß-HSD and P450scc. It also recovered testicular histological parameters and immunoexpression of NF-ĸB P65 and kinesin altered by acrylamide. P. crispum showed protective effects against acrylamide-induced reproductive toxicity by suppressing oxidative damage and inflammatory pathways.

13.
Front Toxicol ; 6: 1357717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601197

RESUMO

Introduction: Adverse Outcome Pathways (AOPs) can support both testing and assessment of endocrine disruptors (EDs). There is, however, a need for further development of the AOP framework to improve its applicability in a regulatory context. Here we have inventoried the AOP-wiki to identify all existing AOPs related to mammalian reproductive toxicity arising from disruption to the estrogen, androgen, and steroidogenesis modalities. Core key events (KEs) shared between relevant AOPs were also identified to aid in further AOP network (AOPN) development. Methods: A systematic approach using two different methods was applied to screen and search the entire AOP-wiki library. An AOPN was visualized using Cytoscape. Manual refinement was performed to remove AOPS devoid of any KEs and/or KERs. Results: Fifty-eight AOPs relevant for mammalian reproductive toxicity were originally identified, with 42 AOPs included in the final AOPN. Several of the KEs and KE relationships (KERs) described similar events and were thus merged to optimize AOPN construction. Sixteen sub-networks related to effects on hormone levels or hormone activity, cancer outcomes, male and female reproductive systems, and overall effects on fertility and reproduction were identified within the AOPN. Twenty-six KEs and 11 KERs were identified as core blocks of knowledge in the AOPN, of which 19 core KEs are already included as parameters in current OECD and US EPA test guidelines. Discussion: The AOPN highlights knowledge gaps that can be targeted for further development of a more complete AOPN that can support the identification and assessment of EDs.

14.
J Hazard Mater ; 470: 134298, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626679

RESUMO

4-methylbenzylidene camphor (4-MBC) and micro/nanoplastics (MNPs) are common in personal care and cosmetic products (PCCPs) and consumer goods; however, they have become pervasive environmental contaminants. MNPs serve as carriers of 4-MBC in both PCCPs and the environment. Our previous study demonstrated that 4-MBC induces estrogenic effects in zebrafish larvae. However, knowledge gaps remain regarding the sex- and tissue-specific accumulation and potential toxicities of chronic coexposure to 4-MBC and MNPs. Herein, adult zebrafish were exposed to environmentally realistic concentrations of 4-MBC (0, 0.4832, and 4832 µg/L), with or without polystyrene nanoplastics (PS-NPs; 50 nm, 1.0 mg/L) for 21 days. Sex-specific accumulation was observed, with higher concentrations in female brains, while males exhibited comparable accumulation in the liver, testes, and brain. Coexposure to PS-NPs intensified the 4-MBC burden in all tested tissues. Dual-omics analysis (transcriptomics and proteomics) revealed dysfunctions in neuronal differentiation, death, and reproduction. 4-MBC-co-PS-NP exposure disrupted the brain histopathology more severely than exposure to 4-MBC alone, inducing sex-specific neurotoxicity and reproductive disruptions. Female zebrafish exhibited autism spectrum disorder-like behavior and disruption of vitellogenesis and oocyte maturation, while male zebrafish showed Parkinson's-like behavior and spermatogenesis disruption. Our findings highlight that PS-NPs enhance tissue accumulation of 4-MBC, leading to sex-specific impairments in the nervous and reproductive systems of zebrafish.


Assuntos
Cânfora , Cânfora/análogos & derivados , Peixe-Zebra , Animais , Masculino , Feminino , Cânfora/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Poliestirenos/toxicidade , Nanopartículas/toxicidade , Reprodução/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Compostos Benzidrílicos/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
15.
J Hazard Mater ; 470: 134165, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574660

RESUMO

It has been reported that N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), a derivative of the tire antioxidant, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), exhibits acute toxicity towards organisms. However, the possible reproductive toxicity of 6PPD-Q in mammals has rarely been reported. In this study, the effects of 6PPD-Q on the reproductive toxicity of C57Bl/6 male mice were assessed after exposure to 6PPD-Q for 40 days at 4 mg/kg body weight (bw). Exposure to 6PPD-Q not only led to a decrease in testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) outcomes, thereby indicating impaired male fertility resulting from 6PPD-Q exposure. Additionally, transcriptomic and metabolomic analyses revealed that 6PPD-Q elicited differential expression of genes and metabolites primarily enriched in spermatogenesis, apoptosis, arginine biosynthesis, and sphingolipid metabolism in the testes of mice. In conclusion, our study reveals the toxicity of 6PPD-Q on the reproductive capacity concerning baseline endocrine disorders, sperm quality, germ cell apoptosis, and the sphingolipid signaling pathway in mice. These findings contribute to an enhanced understanding of the health hazards posed by 6PPD-Q to mammals, thereby facilitating the development of more robust safety regulations governing the utilization and disposal of rubber products.


Assuntos
Camundongos Endogâmicos C57BL , Espermatozoides , Testosterona , Animais , Masculino , Espermatozoides/efeitos dos fármacos , Testosterona/sangue , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Fenilenodiaminas/toxicidade , Borracha/toxicidade , Apoptose/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Camundongos , Reprodução/efeitos dos fármacos , Análise do Sêmen
16.
J Zhejiang Univ Sci B ; 25(4): 307-323, 2024 Apr 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38584093

RESUMO

Microplastics (MPs) and nanoplastics (NPs) have become hazardous materials due to the massive amount of plastic waste and disposable masks, but their specific health effects remain uncertain. In this study, fluorescence-labeled polystyrene NPs (PS-NPs) were injected into the circulatory systems of mice to determine the distribution and potential toxic effects of NPs in vivo. Interestingly, whole-body imaging found that PS-NPs accumulated in the testes of mice. Therefore, the toxic effects of PS-NPs on the reproduction systems and the spermatocytes cell line of male mice, and their mechanisms, were investigated. After oral exposure to PS-NPs, their spermatogenesis was affected and the spermatogenic cells were damaged. The spermatocyte cell line GC-2 was exposed to PS-NPs and analyzed using RNA sequencing (RNA-seq) to determine the toxic mechanisms; a ferroptosis pathway was found after PS-NP exposure. The phenomena and indicators of ferroptosis were then determined and verified by ferroptosis inhibitor ferrostatin-1 (Fer-1), and it was also found that nuclear factor erythroid 2-related factor 2 (Nrf2) played an important role in spermatogenic cell ferroptosis induced by PS-NPs. Finally, it was confirmed in vivo that this mechanism of Nrf2 played a protective role in PS-NPs-induced male reproductive toxicity. This study demonstrated that PS-NPs induce male reproductive dysfunction in mice by causing spermatogenic cell ferroptosis dependent on Nrf2.


Assuntos
Ferroptose , Nanopartículas , Poluentes Químicos da Água , Animais , Masculino , Camundongos , Microplásticos , Fator 2 Relacionado a NF-E2 , Plásticos/toxicidade , Poliestirenos/toxicidade , Reprodução
17.
Toxicol Appl Pharmacol ; 486: 116933, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631520

RESUMO

"White pollution" has a significant impact on male reproduction. Di-n-butyl phthalate (DBP) is one of the most important factors in this type of pollution. Currently, research from international sources has demonstrated the significant reproductive toxicity of DBP. However, most of these studies have focused mainly on hormones expression at the protein and mRNA levels and the specific molecular targets of DBP and its mechanisms of action remain unclear. In this study, we established a Sprague Dawley pregnant mouse model exposed to DBP, and all male offspring were immediately euthanized at birth and bilateral testes were collected. We found through transcriptome sequencing that cell apoptosis and MAPK signaling pathway are the main potential pathways for DBP induced reproductive toxicity. Molecular biology analyses revealed a significant increase in the protein levels of JNK1(MAPK8) and BAX, as well as a significant increase in the BAX/BCL2 ratio after DBP exposure. Therefore, we propose that DBP induces reproductive toxicity by regulating JNK1 expression to activate the MAPK signaling pathway and induce reproductive cell apoptosis. In conclusion, our study provides the first evidence that the MAPK signaling pathway is involved in DBP-induced reproductive toxicity and highlights the importance of JNK1 as a potential target of DBP in inducing reproductive toxicity.

18.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38585880

RESUMO

Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced behavioral anomalies are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.

19.
Environ Toxicol ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38440903

RESUMO

OBJECTIVE: Phthalates (PEs) could cause reproductive harm to males. A mixture of three widely used PEs (MPEs) was used to investigate the ameliorative effects of zinc (Zn) and vitamin E (VE) against male reproductive toxicity. METHODS: Fifty male SD rats were randomly divided into five groups (n = 10). Rats in MPEs group were orally treated with 160 mg/kg/d MPEs, while rats in MPEs combined Zn and/or VE groups were treated with 160 mg/kg/d MPEs plus 25 mg/kg/d Zn and/or 25 mg/kg/d VE. After intervention for 70 days, it's was measured of male reproductive organs' weight, histopathological observation of sperms and testes, serum hormones, PIWI proteins and steroidogenic proteins. RESULTS: Compared with control, anogenital distance, testes weight, epididymides weight, and sex hormones were significantly decreased, while the sperm malformation rate was markedly increased in MPEs group (p < .05); the testicular tissues were injured in MPEs group with disordered and decreased spermatids, and arrested spermatogenesis. PIWIL1, PIWIL2, StAR, CYP11A1 and CYP19A1 were down-regulated in MPEs group (p < .05). However, the alterations of these parameters were restored in MPEs combined Zn and/or VE groups (p < .05). CONCLUSION: Zn and/or VE improved steroid hormone metabolism, and inhibited MPEs' male reproductive toxicity.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38441570

RESUMO

Global male infertility correlated to the rise of endocrine-disrupting chemicals, including insecticides, has grown into a pressing problem. Thiacloprid is one of the most commonly used neonicotinoids that accounts for more than 25% of the global pesticide industry. However, its impact on the reproductive system and male fertility has not been fully elucidated. The object of this study was to explore the adverse effects of thiacloprid on male Wistar rats' reproductive system. Thirty healthy male rats were separated into one of three groups: control group, and two groups that were orally administered with low (22.5 mg/kg) and high dose (62.1 mg/kg) of thiacloprid for 56 days. Thiacloprid significantly (p<0.05) reduced body weight and relative testicular weight, as well as sperm quality (count, motility, viability, and morphology), in a dose-dependent manner. THIA-treated groups revealed a large effect (d > 0.8) on semen quality with Cohen's d of (6.57, 8.82), (20.14, 23.54), and (2.81, 9.10) for count, motility, and viability respectively. Meanwhile, the serum testosterone level dropped while the levels of luteinizing and follicle-stimulating hormones increased. 17ꞵ-hydroxy steroid dehydrogenase and 3ꞵ-hydroxy steroid dehydrogenase levels were significantly decreased in a dose-dependent manner. The activity of the tested antioxidant enzymes catalase (CAT), glutathione reduced (GSH), and superoxide dismutase (SOD) exhibited a considerable decrease compared to the control group with a significant elevation in the lipid peroxidation activity as indicated by malondialdehyde (MDA) level. The testicular histology revealed degenerative changes in spermatogenic cells and interstitial tissue. Comet assay revealed DNA fragmentation in treated groups' testicular tissue. Thiacloprid exposure interferes with reproductive function and impairs male Wistar rat fertility. Such harmful consequences may also develop in humans frequently exposed to thiacloprid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...